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Introduction

The 2005 Gulf of Mexico hurricanes Katrina and Rita provided a clear illustration of the
negative impact of landscape degradation on the sustainability of costal social and civil
infrastructures. Due to a combination of a decrease in river sediment supply, channel
confinement and disconnection from the floodplain, sea-level rise, and land sinking
(subsidence), the Mississippi Deltaic Plain is disappearing at rates estimated on the
order of 44 square kilometres (17 square miles) per year. In addition to supplying a
diverse, productive habitat these off-cost lands also provide an important buffer from
severe storms for the city of New Orleans and other coastal population centres. An
ambitious but feasible plan, to reverse land loss and provide protection, is to breach the
Mississippi river levees downstream of New Orleans thereby diverting a significant
sediment load for delta land building (Kim ef al., 2009). The success of this project
will hinge on developing a comprehensive understanding how delta lobes and their
associated ecosystems grow (Day et al., 2007). Towards this end, as summarized in the
literature review below, a number of recent research works have been directed at
building analytical and numerical models that can be used to describe the deposit and
growth of sediment lobes in river deltas. A key feature in these efforts has been to
adopt and modify analysis approaches developed for heat transfer problems. A
particularly fruitful line of research has been the application of numerical solutions of
heat conduction controlled phase change problems for modelling the mass balance in a
growing sediment delta. The majority of these efforts have focused on one-dimensional
approaches that model the formation of a two-dimensional sediment wedge on the
basement bedrock. To date, models in two-dimensional domains, that produce
developing three-dimensional sediment cones, have been restricted to problems of
point sources entering an ocean domain (Voller ef al, 2006). The object of this work is to
extend the previous endeavourers and consider the formation of a three-dimensional
depositing sediment cone that forms over both land and ocean domains.

Description of an example problem

A representative example problem, that will drive the numerical developments in this
work, 1s the building of a three-dimensional sediment deposit on a bedrock basement
slope that enters into an ocean with a constant sea-level; Figure 1 shows the initial
domain. Here, the bedrock slope B is assumed constant and the origin is placed at the
intersection of the sea-level and bedrock. In this way, the bedrock elevations can be
calculated as m = Bx with the bedrock elevation at sea-level taking the value n = 0.
The sediment deposit is formed by introducing (at time ¢ = 0) a mixture of sediment
and water along a strip of width w (—w/2 < y < w/2) well inland of the ocean. When
the resulting sediment line flux q = (¢o,0) m?s~! reaches the ocean it is deposited and
forms a cone. In plan view, the boundaries of this cone will advance in both the seaward
and landward directions. A time snapshot of the three-dimensional above sea-level
forming delta sediment deposit, measured as height % above sea-level is shown in
Figure 2(a). The sediment is deposited into the ocean to build an ocean delta with a
shoreline boundary moving seaward. Initially, the sediment moves over the land
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Figure 1.

Solution domain bedrock
surface (land surface and
ocean-floor) entering an
ocean with a fixed
sea-level

Figure 2.
Schematic of the delta
building process

flux in

land-surface

x+20
h
6
on-lap A 4 on-lap
T 2 shore-line
0
- g 2
v :
-6
shoreline] -20 0x
e
X
(b) (c)

Notes: Time snap shots of (a) conical sediment deposit above sea-level; (b)
plan form sediment deposit identifying shoreline and on-lap moving bound-
aries; and (c) mid section cross-section of sediment wedge



surface with out depositing. As the sediment deposits in the ocean, however, the
sediment cone also encroaches landward, forming an additional boundary — referred to
as the on-lap — moving up the land slope. A time snap shot of the plan form of the
sediment deposit, distinguishing the moving shoreline and on-lap boundaries, is shown
in Figure 2(b). An additional perspective, also identifying the moving shoreline and
on-lap boundaries, is given by the mid-plane cross-section of the deposit in Figure 2(c).
With reference to this figure, it is noted that a typical slope for the submarine sediment
deposit is significantly steeper that the slope of sub-aerial sediment, hence in calculations
it is reasonable to assume that the submarine slope is vertical without loss of accuracy.

The Swenson-Stefan analogy

The critical observation that allows for the use of numerical heat transfer tools to
model the formation of sedimentary deltas was made by Swenson ef al. (2000). These
authors consider a one-dimensional model of a point sediment + water source issuing
into a sloping ocean. A schematic of this geometry is shown in Figure 3. Here, for
simplicity of treatment, it is assumed that:

 the submarine deposit has a vertical slope; and

« the bedrock basement slope remains fixed at 8 (i.e. there are no tectonic actions).

In this way, the transport and deposit of the sediment in the system is governed by the
Exner equation (see, Paola and Voller, 2005):

oh 10q
5 " sap  sass), (1)
where s(f) is the moving shoreline position, /(x, f) is the height of the sediment deposit
above sea-level, £ is the porosity of the sediment deposit, and ¢ is the sediment unit
flux. Using a momentum balance coupled to basic sediment transport laws, it is
possible to show that in field (Paola et al, 1992) and laboratory settings (Lorenzo-
Trueba et al., 2009) it is reasonable to model the sediment flux with a diffusion law
written in terms of the local slope of the sediment surface:

x=0

| s(1)

hJ

Water and Sediment
line discharges g,
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Figure 3.

Schematic of
one-dimensional sediment
deposit into a sloping
ocean that results in the
Swenson-Stefan analogy
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(2)

qg=—-v %7
where v, the diffusion coefficient (m?/s), depends on such things as the water discharge
and sediment properties (e.g. grain size). With the diffusion model, the Exner equation
takes the familiar form of the Fourier heat conduction equation, i.e:

oh vorh
= <x< .
Pk 0<x<s(t) (3)

The problem is closed by specifying the initial conditions s = 0, 7 = 0 and defining
the boundary conditions:

o
Vaxx:O—QO;
h(x =s,t) =0, (4)
_voh _ ., ds
edx = dt’

The last boundary condition, needed to determine the movement of the shoreline s(#),
is essentially a balance between the surplus sediment arriving at the shoreline and the
rate at which the ocean ahead of the shoreline can be filled. The critical observation
made by Swenson et al. (2000) was to associate this mass balance condition to the
classic the Stefan heat balance condition in a one-phase melting problem (Crank, 1984).
This fact, coupled to the Fourier heat condition nature of the domain sediment
transport Equation (3), allowed for the application of a substantial body of work on
heat transfer melting for modelling the formation of sedimentary deltas. It is important
to note, however, that the Swenson-Stefan condition in Equation (4) has an interesting
element not seen in the classic Stefan condition. Namely, the latent heat term L = Bs is
not a constant in space but increases with increasing shoreline position. This
interesting feature can be compounded by allowing for tectonic subsidence/uplift in
which the bedrock basement will moves down or up in time. With this feature, the
latent heat becomes a function of both space and time.

A brief outline of previous work

Since it publication in 2000, the Swenson analogy has been extensively applied
towards understanding the formation and dynamics of sedimentary delta systems.
Voller et al. (2004) shows that for the fixed basement geometry in Figure 3 a closed
form similarity solution for tracking the movement of the shoreline can be constructed.
This solution is used by Voller et al (2006) to verify a numerical enthalpy-like fixed
grid solution for more general cases of the problem; including the formation of two-
dimensional deltas from a point sediment source. This work and more recent numerical
work (Patnaik et al, 2009) consider problems in which the latent heat (ocean depth) is a
function of both space and time. Following up on the analytical solution of Voller et al.
(2004), Capart et al (2007) develop a range of solutions that look at alternatives to the



geometry in Figure 3. The most challenging alternative geometry is the one shown in
the cross-section of Figure 2(c). This problem involves tracking not one but two
boundaries, the shoreline and the landward moving on-lap boundary. Independently,
Lai and Capart (2009) and Lorenzo-Trueba et al. (2009) develop similarity solutions for
this two moving boundary case; the later work arriving at a closed form solution that is
validated against experimental measurements. Experimentally validated deforming
grid numerical solutions for the two moving boundary problem, with the additional
feature of sea-level rise, are also reported by Swenson and Muto (2007) and Parker and
Muto (2003). The most recent work from Lorenzo-Trueba and Voller (2010) extends the
one-dimensional two moving boundary similarity solution to cases where a nonlinear
slope dependent diffusion coefficient is considered. This work also introduces a
one-dimensional fixed grid enthalpy like solution for the two-moving boundary
(shoreline and on-lap) problem.

The novel contribution of the current work is to develop, for the first time, a
numerical solution of the two-dimensional, two-moving (shoreline and on-lap) front
problem. This is the problem schematically illustrated in Figures 1 and 2. As the
sediment is deposited a three-dimensional cone is formed. The plan view area of this
cone (see Figure 2(b)) has two distinct moving fronts; the shoreline advancing into the
ocean and the on-lap advancing landward.

The governing equations for the example problem

Returning to the example problem defined in Figures 1 and 2. Assuming that the
sediment flux on the deposited sediment surface (the fluvial surface) is described by
the diffusion law:

q=—vVh, (5)
the governing equation for the sediment mass-balance in the deposited cone is:

oh v

— =-V%L. 6

ot & (6)
The domain of this equation, which changes in time, is defined by the moving shoreline
and on-lap boundaries. On the shoreline boundary two conditions have to be met:

h=0 (7)

wvWh-n=—eBxv- n. (8)

The first sets the shoreline sediment height at sea-level, the second is the two-
dimensional form of the Swenson-Stefan condition in Equation (4) where v is the
velocity of the shoreline and 2 is the unit normal of the shoreline pointing out of the
sediment deposit.

On the on-lap boundary the conditions are:

h=B,x, 9)

vWh-n=—q-n. (10)
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The first sets the on-lap sediment height equal to the local bedrock basement height,
the second accounts for the flux that is transported across the on-lap front.

A dimensionless form of the governing equations can be obtained with the
introduction of the following scaling:

v q_ vle d

= a—
2 v’

_n
=7,

<

(11)

where / is an appropriate length scale. Dropping the dimensionless superscript “d” for
notational convenience the dimensionless form of the governing equation is:

oh 9
i Vh (12)
with on the shoreline boundary:
h=0 (13)
Vh-n=—-Bxv-n (14)
and on the on-lap boundary:
h=pBx (15)
Vh-n=—-q-n (16)

In this form, the problem is essentially defined by the specification of the bedrock
basement slope 8 and the input sediment line flux g, = (go, 0). A suitable choice for the
length scale ¢ in Equation (11) is the width of the strip over which the sediment flux is
introduced to the system, i.e. £ = w. An alternative, used here, is to set £ to the side length
of the square control volume cells used in the computation. In this way, the problem is
fully defined by specifying the number of computational cells in the width w.

The fixed grid numerical solution
In keeping with the previous numerical solutions (Voller et al., 2006; Patnaik ef al., 2009;
Lorenzo-Trueba and Voller, 2010), a fixed grid enthalpy-like solution will be developed.
This solution is achieved using a cell centred control volume finite difference scheme. A
grid of square control volumes 1 x 1 arranged as shown in Figure 4 is used. The
solution is segmented into two domains:

(1) theland domain; and
(2) the ocean domain, separated by the initial position of the shoreline.

Within a time step, the solution is first constructed in the land domain and followed by
advancing the solution in the ocean domain. Details in these two steps are provided.
Assuming symmetry, the land domain is defined as the region enclosed by the
domain centre line, the far West boundary, the fart North boundary and the initial
shoreline position. The dimensionless equation solved in the land domain is Equation
(12). In solving this equation the initial condition / = m is used, a boundary condition
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q = (90,0) is applied on the far North boundary, symmetry is assumed along the
domain centre line and zero sediment flux conditions are applied on the far West
boundary and initial shoreline boundaries. Note:

+ the physical condition — V% - n = g on the on-lap boundary (see, Equation (16))
is not explicitly applied but rather implicitly treated by determining the ability of
a given control volume to balance the sediment flux entering via the diffusion
transport to it neighbours; and

« the noflow boundary on the shoreline is not physical but a computational
convenience, this action is corrected in the subsequent solution over the ocean domain.

The order of the solution steps in the land domain is as follows:

(1) A solution is first constructed for Cell A (see, Figure 4) by setting the flux
across the North boundary to:

Fluxy! = qo.

The flux out across the south boundary is calculated as:
if Fluxﬁv < h(i,mid) — h(i +1,mid)
h(i,mid) — h(i + 1,mid), otherwise

Fluxs = {

i=1

Flux,

(17)

(18)

where mud is the node counter in the y-direction of the nodes on the domain
centre line. Note with Equation (18), if the slope value of the current land
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surface (i(z, mid) — h(i + 1,mid)) is too steep, the incoming prescribed flux
will be by-pass through the cell without deposit; this is the gist if the implicit
treatment of the on-lap condition and a similar operation will be repeated
throughout the algorithm. Calculation of the fluxes associated with Cell A is
completed by calculating the fluxes out across the East and West boundaries
as:

Flux‘bUT = [h(i,mid) — h(i,mid — 1)] + [h(i, mid) — h(i,mid + 1)) (19)
=1
Note this calculation will only be non-zero if sediment has been deposited on the
centreline cell, ie. if the current value %(1, mid) > n(1,mid). With the fluxes
calculated, the deposition of sediment in the cell over a time step can be
explicitly calculated (assuming a dimensionless time step 8¢ = 0.1) as:

7 (i, mid) = h(i,mid) + 0.1 [Fluxyy — Flux'y — Fluxy 7]

=1 (20)

The calculations for the other cells 7 > 1 along the centreline are essentially
identical to those in Equations (17)-(20). The flux across the North control
volume boundary being set to the South flux of the cell immediately to the
north of cell 4, 1ie. Fluxﬁv = Fluxis’1 and on the initial shoreline boundary the
(¢ = ngyyre) the South flux set to zero, i.e. Fl lux’gf =0.

The calculations down non-centre columns j # md are similar to those in the
centre column. The differences are: if the volume column is outside of the
section where a flux is specified (see cell B in Figure 4) the initial North flux is
set as: Fluxj\?l = 0; the flux across the South boundary is calculated as:

Fiusd. — { Flucy + Flexy, i Flux, + Fluxy, < h(i,j) — h(i +1,5)
S\ h(i,mid) — h(i + 1,mid), otherwise
(21)

where FluxfE =h(i,j+1)—h(i,j) — a step that by-passes all the entering
sediment through the cell if the current land surface is too steep; and the
sediment update is calculated as:

W (4,7) = h(i,7) + 0.1 [Fluxty + Fluxs, — Fluxy — Fluxy) (22)

where Flux';, = h(i,j) — h(i,j — 1) is the flux leaving across the West face. Note
along the far West boundary (e.g. Cell D in Figure 4) the West flux is Flux;, =0
and once again on the initial shoreline boundary (e.g. Cell E in Figure 4) the
South flux is set to zero, Flux'¢" = 0.

Steps 1 to 3 complete the calculations for the land nodes.

In solving for the sediment deposit in the ocean domain an enthalpy like solution is

employed. In the first place an enthalpy is defined as:



H=h+L (23)

where 0 < L < Bx is a “latent heat” term that measures the depth of the ocean at the
shoreline. At a point on the shore, while 0 < L < —Bx, all the sediment supplied is
used to fill up the ocean and the sediment height at that point remains fixed at 2 = 0.
With the definition in Equation (23), the Swenson-Stefan condition can be absorbed
into a single-domain treatment with dimensionless governing equation (in the ocean
domain):

H
%—t =V%h (24)

The initial conditions are 2z = L = 0, the boundary conditions are symmetry along the
domain centre line, no flow across the far West and far South boundaries and a
sediment flux specified by the previous land domain solution along the initial shoreline
boundary. The key steps in the ocean domain are as follows:

(1) An initial estimate of the flux entering the North face of the ocean control
volumes adjacent to the initial shoreline (e.g. Cell F in Figure 4) is calculated as:

Flux;i\;herl = h(nshoreaj) - h(nshom + laj)- (25)

This flux can only be sustained without unphysical erosion in the first
landward cell at ¢ = #ng,,,, if (@assuming a time step of 8¢ = 0.1):

Fi lux}ﬁ;”“""“ > 107" (nshore aj ) . (26)

where 2" (Mgpore,7) 18 the current estimate from the land domain calculation. If
the condition in Equation (26) does not hold then any sediment entering the cell
at ¢ = ng,yy, by-passes directly into the ocean without land deposit, hence the
North flux for the adjacent sea domain volume is reset as:

Fi lux;f;”"’” H = 107" (nshm'e J ) (27)

and the previously calculated land domain sediment is readjusted to its original
height, i.e. 7" (Ngore,]) = N(Rsiores]) = N(siore, ). If on the other hand the
condition in Equation (26) is met, the North flux for the adjacent sea domain
volume retains the initial estimate from Equation (25) and the calculated land
domain sediment is reset as:

hnew (nshore ,]) = hnew (nshm'e 7]) - 01 Flux;’l\;/zon>+1 (28)

(2) With the incoming flux across the initial shoreline specified, an explicit solution
for the enthalpy like equation can be advanced row by row. First, a nodal
enthalpy is calculated as:

H = h(i,j) + L(i,5) + 0.1 [Fluxy + Fluxs, — Fluxy, — Flux]

. (29)
Nshore > >N
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where  Fluxy, = h(i,j + 1) — h(i,j), Flux'y = h(i,j) —h(i,j —1), Fluxs=
h(i,j) — h(i + 1,j), and each new row is seeded by setting Flux}, = Fluxg‘l.

(3) Following the calculation of the enthalpy the height of the sediment and
enthalpy values can be calculated as:

new; ~ _ ) H@I) +@7) i H@E,7) > -—m(,))
WD) = {O otherwise (30)
new (; N\ __ 71](1.,].) if H(Zvj) > 77](1.7].)
L) = { H(i,j) otherwise (31)

This step completes the time step calculations and establishes an update of the
deposit sediment height field /" at all nodes (land and ocean) and an updated
latent heat field L™ in the ocean domain nodes.

Before the next time step (seeded by setting & = /" and L = L"), an
estimate of the plan-form (v-y) extent of the sediment deposit tracking the
shoreline and on-lap boundaries can be made by calculating the nodal field
variable:

. W) —m(@,7)  i,j€land — domain
(i) = { _L(,j)/mG,i)  i,j€ocean — domain (32)

In this way, the contour ¢(,7) = 0 marks out the plan-form area of the sediment
deposit; in practice — to ensure a smoother contour — the contour ¢(z,7) = 0.05 is
plotted.

An extension for tectonic subsidence

To add a layer of complexity a simple hinge tectonic subsidence can be added to the
above model. In this situation, the initial bedrock slope is B,. As time increases,
however, the basement slope in the ocean domain x > 0 increases with time according
to:

B=By+ Bt (33)

where B is a given rate of angle increase . In this model, the ocean basement is treated
as a separate plate to the land bedrock basement; a plate that is allowed to hinge
downward and increase in slope as the process advances in time. This form of
subsidence is readily incorporated into the above model by ensuring that the basement
elevation in the ocean domain is updated in time through:

n(ij) = (B +Bo)x. x>0, (34)

a step that makes the latent heat term in Equation (31) a function of both space and
time.

Verification
The solution above is verified in two ways. The first is simply to check the mass
balance on the systems. Up to the simulation time ¢ the total sediment added to the



system will be:

Q" = qowt (35)

where w is the width of the flux input strip. At the same time, the total sediment
deposited is given by:

Q=% hij)—m(s) + Y k(i) +LGE.j): (36)

ij€land ijesea

If the proposed scheme conserves mass then the quantities in Equations (35) and (36)
should be equal. For all the calculations conducted here, the values of @ and Q% are
identical at every time step.

The second verification is to consider a problem where the input flux extends across
the entire width of the domain. In this case, the problem becomes one dimensional, with
constant x-lines representing the positions of the on-lap and shoreline fronts. If tectonic
subsidence is negligible (fixed slope B), this problem is amenable to the closed form
analytical solution developed by Lorenzo-Trueba et al. (2009). This solution sets the
positions of the moving boundaries as:

shoreline = 2 V't

37
on —lap = —2\,V/1. 57)

For the values of B = 0.25, gy = 0.2 the values of the constants in Equations (37) are:

\s = 0.666
A, = 0.44.

The analytical solutions (lines) for the movement of the shoreline and on-lap are
compared with numerical solutions (20 (1 x 1) cells in the width (y) direction, 39 in the
length (x) direction) in Figure 5. The numerical prediction for the shoreline front is
obtained by recording the times when the latent heats along the mid-line of nodes reach
the value m(¢,mid)/2 (i > ngore). The predictions for the on-lap when the mid line
nodes first record sediment heights 7(i,mid) > m(i,mid) (1 <i < ngee). The
accuracy of the comparison in Figure 5 confirms the suitability of the numerical
solutions steps laid out above. Note further this is also an indirect validation of the
model in that Lorenzo-Trueba ef al. (2009) have extensively validated the analytical
model for tracking the front movements with experimental results.

Results

An important application of the numerical model developed and tested above is to
determine, for given scenarios, the effectiveness of delta land building in the ocean
domain; land building that will mitigate the consequences of severe costal events.

First two cases of the example problem with a fixed bedrock slope B = 0.25 are
examined. In both cases, grid independent results are obtained with 50 (1 x 1) control
volumes in the x-direction and 79 control volumes in the y-direction; the initial shoreline
1s placed on the South boundary of 20th row of volumes. In Case 1, the sediment flux into
the systems is set as go = 0.225 and applied over a width of seven control volumes. In
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Figure 5.
Verification of the
sediment delta model
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Case 2, the sediment flux is set as gy = 0.15 and applied over a width of 29 control
volumes. The Case 1 result, plan-form plots of the shoreline and on-lap boundaries at
times £ =10, 100, 500, and the above sea-level sediment cone at time ¢ = 500 are
shown in left panel of Figure 6. The Case 2 results, plan-form plots of the shoreline and
on-lap boundaries at times = 10, 50, 200, and the above sea-level sediment cone at
time ¢ = 200 is shown in right panel of Figure 6. A core difference between the results is
that in the Case 1, with the higher flux applied over a smaller strip width, the on-lap
boundary initially advances rapidly and then slows significantly, whereas the shoreline
boundary has a steady advance. In contrast the plan-form shape for a small flux applied
over a larger strip width (Case 2) appears to expand relatively uniformly in time in both
the landward and shoreline directions. This observation is confirmed by looking at the
partition of sediment mass (volume) deposited between the land and the ocean domains.
The left hand side of Figure 7 shows the land volume deposit with time for both Cases 1
and 2. These curves indicate a slowing of mass (volume) deposited with time but in Case
1 (higher flux applied over a smaller width) there is a pronounced drop off in the rate of
on-lap deposit as time increases. In contrast, the right hand side of Figure 7 shows the
ocean deposit with time. In both cases here, the rates of mass (volume) deposited in the
ocean domain are essentially constant.

As a further test case, a problem that has a hinged subsidence in the ocean
domain is considered. In this problem, the plan-form domain discretization and
input sediment conditions are identical to Case 1 above. The initial slope of the
bedrock in both land and ocean domains is B = 0.25. As time increase, however, the
bedrock in the sea domain hinges downward so that at time ¢ its slope is
0.25(1 + ¢/500). In this way, over the simulation time 0 < ¢ < 500, the ocean
bedrock slope doubles in value. In Figure 8, the predicted plan-form positions of the
on-lap and shoreline fronts at times ¢ = 10, 100, 500 with this subsidence are
compared with the no-subsidence predictions of Case 1. The effect of the increasing
ocean depth is quite clear. The on-lap front, evolving in an area without subsidence,
1s not significantly affected by the hinge subsidence in the ocean domain. At early
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simulation times (¢ = 10, 100), when the additional accommodation created by the
hinge subsidence is still relatively small, the positioning of the shoreline is close to
that seen in the non-subsiding case. At late simulation times (f = 500), however, the
increased accommodation space results in a significantly smaller plan-form area for
the delta in the ocean domain.
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Figure 6.

Two simulation cases for
the deposit of a sediment
delta onto a constant
sloping bedrock

Figure 7.

Rate of sediment volume
deposits in simulation
Cases 1 and 2
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Figure 8.

Comparison of plan form
delta deposition when a
hinged subsidence is
presents (left hand frame)
and when it is not (right
hand frame)
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Conclusions

The application of numerical heat transfer methods originally developed for free and
moving boundary problems has proved to be of great benefit in advancing the
understanding of the formation of sedimentary deltas. In a general setting, the mass
balance problem in delta formation can be viewed as a generalized the Stefan problem
with the ocean bathymetry taking the role of the latent heat. The distinctive feature in
this class of problems, that test basic heat transfer the Stefan problem methods, is that
the latent heat can be a function of both space (a variable ocean bathymetry) and time
(tectonic subsidence/uplift or sea-level fall/rise). In the past, the majority of heat
transfer applications for modelling delta growth have focused on the deposit of a two-
dimensional sediment wedge in a one-dimensional domain bounded below by a
specified bedrock basement. In this work, the deposit of a three-dimensional sediment
cone onto a sloping bedrock plain entering an ocean is considered. The unique
numerical challenge in this problem is to develop methods that can track two moving
fronts, the seaward advancing shoreline and the on-lap boundary marking the
landward advance of the sediment deposit. A fixed grid enthalpy like solution for this
problem has been successfully developed and verified. Predictions from the resulting
numerical model throw light on the critical question of how much of the sediment
entering the system is used to advance the shoreline and thereby provide protection of
costal communities from natural calamities.

In closing it is noted that, although understanding the role of the sediment mass
balance is a critical first step towards the prediction of delta growth to complete the
picture other important elements have to be included in the model. In particular, it
needs to be recognized that the sediment is transported over the delta surface via water
flows. In the current mass balance model, it is implicitly assumed that the water flow
either covers the delta at all times (sheet flow) or that the flow channel switching over
the delta surface is at faster rate that the sediment deposition process. In more refined
models, it will be necessary to explicitly account for the formation and dynamics of the
channels on the delta surface. Not only will this add to the resolution of the mass
transport and deposition it will also provide key information for determining the plant
succession essential for stabilizing the land building. Further, once plants are included,



it also becomes important to consider the role of peat production and decay in the land
building process.

Delta building models that resolve channels and account for net biotic production
are current areas of research with the National Center for Earth Surface Dynamics. As
these models develop researchers in this centre continue to look towards the
application of heat transfer techniques to deal with these more refined modelling
issues. For example, an exploration between dendritic crystal growth models (Voller,
2008) and delta channel formation.
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